Документ подписан простой электронной подписью

Информ Миничетерство науки и высшего образования Российской Федерации ФИО: Макаренко Елена Николаевна Должноств: Ректор Должноств: Ректор Дата повысии столо образования «Ростовский государственный экономический Уникальный программный ключ: университет (РИНХ)» с098bc0c1041cb2a4cf926cf171d6715d99a6ae00adc8e27b55cbe1e2dbd7c78

УТГЕРЖДАЮ
Директео Института магистратуры
______Иванова Е.А.
«__03__» __июня____ 2024___г.

Рабочая программа дисциплины Избранные вопросы теории вероятности и математическая статистика

Направление 01.04.02 Прикладная математика и информатика магистерская программа 01.04.02.04 "Искусственный интеллект: математические модели и прикладные решения"

Для набора 2024 года

Квалификация Магистр

Составитель(и) программы:

Богачев Тарас Викторович, к.ф.-м.н., доцент каф. прикладной математики и технологий искусственного интеллекта РГЭУ(РИНХ)

І. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цели освоения дисциплины: понимание основ и методов современной теории вероятностей, математической статистики и теории случайных процессов, методов интерпретации результатов проведения экспериментов, приобретение навыков решения задач, требующих принятия решений в условиях неопределенности.

Задачи: овладеть математическим аппаратом теории вероятностей, методами стохастического моделирования, основными статистическими методами научится решать задачи из различных разделов теории вероятностей и математической статистики, познакомиться с теорией случайных процессов.

II. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

- 2.1. Учебная дисциплина «Избранные вопросы теории вероятностей и математической статистики» (1 семестр, 1 курс) относится обязательной части блока дисциплин (модулей) и является обязательной дисциплиной.
- 2.2. Для изучения данной учебной дисциплины необходимы базовые знания, умения и навыки по теории вероятностей, методам оптимизации, линейной алгебры и программированию, которые формируются в бакалавриате дисциплинами «Алгебра и геометрия», «Математический анализ», «Основы информатики», «Методы оптимизации и исследование операций», «Теория вероятностей и математическая статистика».
- 2.3. Знания, умения и навыки, полученные в ходе изучения данной дисциплины, необходимы для изучения последующих дисциплин: "Машинное обучение: математические основы", "Прикладное машинное обучение", "Глубокое обучение", "Анализ временных рядов", "Обучение с подкреплением и приложения" и могут использоваться для решения профессиональных задач в научно-исследовательской, научно-производственной и проектной деятельности, в частности, при подготовке выпускной квалификационной работы.

III. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки:

Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы:

Шифр и формулировка компетенций (результаты освоения ОП)	Индикаторы компетенций	Элементы компетенций, формируемые дисциплиной
ОПК-1. Способен решать	ОПК-1.1. Осуществляет анализ	Знать основные понятия теории
актуальные задачи фундаментальной и	научной литературы для выявления актуальных задач	вероятностей, математической статистики и теории случайных
прикладной математики	фундаментальной и прикладной математики	процессов, определения и свойства математических объектов, рассматриваемых в этих областях, формулировки утверждений и методы их доказательств, возможные сферы их применения Уметь решать задачи из различных разделов теории вероятностей и математической

ОПК-1.2. Аргументированно обосновывает выбор метода решения конкретной актуальной задачи фундаментальной и прикладной математики на основе теоретических знаний	статистики, доказывать утверждения и применять полученные навыки в других областях знаний Владеть математическим аппаратом теории вероятностей; методами стохастического моделирования; основными статистическими методами Знать методику оценивания вероятностей наступления событий, проверки статистических гипотез и обработки экспериментальных данных, оценки риска при принятии решений, методы стохастического моделирования Уметь решать задачи вычислительные и теоретические задачи вероятностного характера Владеть навыками решения задач,
	задачи вероятностного характера

IV. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

Из них 34 часа лекционных занятий, 34 часа практических занятий, 76 часов на самостоятельную работу в течение семестра и 36 часов на подготовку к экзамену.

Форма отчетности: экзамен (1 семестр)

4.1 Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

№ п/п	Раздел дисциплины/темы	Семестр	само	Виды учебной р стоятельную раб трудоем (в ча актная работа пр с обучающим	боту обучающихомкость сах) еподавателя	Б Самостоятел Бная работа	Формы текущего контроля успеваемости Форма промежуточной аттестации (по
			Лекции	Практические занятия	Лабораторные занятия	Само	семестрам)
1	Основы современной теории вероятностей	1	12	12		25	Контрольная работа, индивидуальное задание
1.1	Модель вероятностного эксперимента, условные вероятности. Использование теории вероятностей и математической статистики в технологиях искусственного интеллекта		3	3		7	
1.2	Случайные величины, интегрирование, характеристические функции		3	3		6	
1.3	Сходимость случайных величин		3	3		6	
1.4	Условное математическое ожидание		3	3		6	
2	Математическая статистика		10	10		25	Контрольная работа,

№ п/п	Раздел дисциплины/темы	Семестр	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах) Контактная работа преподавателя с обучающимися			Формы текущего контроля успеваемости Форма промежуточной аттестации (по семестрам)	
							индивидуальное задание
2.1	Статистические модели, эмпирическое распределение		2	2		5	
2.2	Оценка параметров		3	3		7	
2.3	Проверка гипотез		3	3		7	
2.4	Линейная регрессия		2	2		7	
3	Элементы теории случайных процессов	1	12	12		26	Контрольная работа, индивидуальные задания
3.1	Мартингалы, дискретное время		2	2		6	
3.2	Мартингалы, непрерывное время. Броуновское движение		3	3		6	
3.3	Марковские процессы, уравнения Колмогорова- Чепмена. Фундаментальное уравнение		3	3		7	
3.4	Цепи Маркова, дискретное время		4	4		7	
	Подготовка к экзамену					36	
	Итого часов		34	34		112	

4.2 План внеаудиторной самостоятельной работы обучающихся по дисциплине

		Самостоятельная	работа обучают	цихся		Учебно-методическое
Семестр	Название раздела, темы	Вид самостоятельной работы	Сроки выполнения	Затраты времени (час.)	Оценочное средство	обеспечение самостоятельной работы

	Самостоятельная работа обучающихся					Учебно-методическое обеспечение
Семестр	Название раздела, темы	вид самостоятельной Сроки времи		Затраты времени (час.)	Оценочное средство	самостоятельной работы
1	Основы современной теории вероятностей	Изучение лекций, учебной литературы и программного обеспечения	3 недели	14	Контрольная работа	Материалы лекций,
1	Основы современной теории вероятностей	Изучение лекций, учебной литературы и программного обеспечения	3 недели	12	Индивидуальное задание	рекомендованная учебная литература,
1	Математическая статистика	Изучение лекций, учебной литературы и программного обеспечения	2 недели	12	Контрольная работа	
1	Математическая статистика	Изучение лекций, учебной литературы и программного обеспечения	3 недели	14	Индивидуальное задание	
1	Элементы теории случайных процессов	Изучение лекций, учебной литературы и программного обеспечения	3 недели	13	Контрольная работа	
1	Элементы теории случайных процессов	Изучение лекций, учебной литературы	2 недели	13	Индивидуальные задания	

		Самостоятельная	работа обучаюц	0	Учебно-методическое обеспечение	
Семестр	Семестр Название раздела, темы	Вид самостоятельной работы	Сроки выполнения	Затраты времени (час.)	Оценочное средство	самостоятельной работы
1		Подготовка к экзамену	1 неделя	36	Экзамен	
Общая трудоемкость самостоятельной работы по дисциплине (час)				112		
Бюджет времени самостоятельной работы, предусмотренный учебным планом для данной дисциплины (час)				112		

4.3 Содержание учебного материала

1. Основы современной теории вероятностей.

- 1.1. Вероятностное пространство, независимость, прямое произведение вероятностных пространств, условная вероятность, формула полной вероятности, правило умножения, формула Байеса.
- 1.2. Случайные переменные, интегрирование, распределение, дискретные и непрерывные случайные величины, формула замены переменных, математическое ожидание, дисперсия. Характеристические функции. Многомерные нормальные случайные величины.
- 1.3. Виды сходимости случайных величин: с вероятностью 1, по вероятности, в L^r , по распределению. Теорема о монотонной сходимости, теорема о мажорируемой сходимости, лемма Фату. Теорема непрерывности, центральная предельная теорема, теорема Пуассона.
- 1.4. Условные математические ожидания и их свойства. Условные математические ожидания случайных сумм. Условные распределения, двумерные случайные величины, многомерные нормальные случайные величины.

2. Математическая статистика

- 2.1. Статистические модели, эмпирическое распределение, порядковые статистики, медиана, квантили, процентили, гистограмма. Метод Монте-Карло.
- 2.2. Оценка параметров. Метод моментов. Метод максимального правдоподобия. Несмещенность, состоятельность. Информация Фишера. Неравенство Рао-Крамера. Асимптотическая нормальность. Дельта-метод. Доверительные интервалы.
- 2.3. Проверка гипотез. Ошибки I и II рода. Функция мощности. Простые гипотезы. Лемма Неймана-Пирсона. Односторонний тест. Критерии отношения правдоподобия для сложных гипотез. Критерии согласия.
- 2.4. Линейная регрессия. Связь с методом максимального правдоподобия. Свойства оценок метода наименьших квадратов. Выбор модели.

3. Элементы теории случайных процессов

- 3.1. Мартингалы с дискретным временем, примеры. Разложение Дуба. Сходимость мартингалов, ограниченных в L^2 . Время остановки, сигма-алгебра событий, наблюдаемых до момента остановки, Теорема Дуба о свободном выборе. Максимальные неравенства Дуба, теоремы о сходимости мартингалов, равномерная интегрируемость. Теорема Леви, закон 0 или 1 Колмогорова.
- 3.2. Мартингалы с непрерывным временем, броуновское движение. Мартингальные свойства броуновского движения. Ожидаемое время выхода из интервала, вероятность выхода через одну из границ, ожидаемое время достижения уровня, вероятность достижения уровня.
- 3.3. Марковские процессы. Уравнения Колмогорова-Чепмена. Примеры марковских процессов. Теоремы Колмогорова. Переходная функция броуновского движения. Фундаментальное уравнение. Приложения к случайным блужданиям.
- 3.4. Цепи Маркова с дискретным временем. Классификация состояний. Повторяемость, положительная повторяемость, периодичность. Инвариантные распределения. Сходимость к равновесию. Эргодическая теорема.

V. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Традиционные лекции, обсуждение конкретных задач прикладного характера, контрольные работы, индивидуальные задания. Дисциплина может быть реализована частично или полностью с использованием ЭИОС Университета (ЭО и ДОТ). Аудиторные занятия и другие формы контактной работы обучающихся с преподавателем могут проводиться с использованием платформ MicrosoftTeams, в том числе, в режиме онлайн-лекций и онлайн-семинаров.

VI. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Полный комплект контрольно-оценочных материалов (Фонд оценочных средств) оформляется в виде приложения к рабочей программе дисциплины.

VII. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ 7.1. Основная литература.

- 1. Балдин, К. В. Теория вероятностей и математическая статистика: учебник/ К. В. Балдин, В. Н. Башлыков, А. В. Рукосуев. 3-е изд., стер. Москва: Дашков и К°, 2020. 472 с. https://biblioclub.ru/index.php?page=book&id=573173
- 2. Ширяев, А.Н. Вероятность-2: Суммы и последовательности случайных величин стационарные, мартингалы, марковские цепи: учебник : в 2-х кн. / А.Н. Ширяев. Изд. 4-е, перераб. и доп. Москва : МЦНМО, 2007. 416 с. http://biblioclub.ru/index.php?page=book&id=63257

7.2. Дополнительная литература.

1. Кельберт, М.Я. Вероятность и статистика в примерах и задачах / М.Я. Кельберт, Ю.М. Сухов ; пер. Л. Сахно. - Москва : МЦНМО, 2010. - Т. 2. Марковские цепи как отправная точка теории случайных процессов. - 560 с.

http://biblioclub.ru/index.php?page=book&id=63156

2. Булинский, А.В. Теория случайных процессов / А.В. Булинский, А.Н. Ширяев. - Москва : Физматлит, 2005. - 403 с.

http://biblioclub.ru/index.php?page=book&id=68121

7.3. Список авторских методических разработок.

Рохлин Д.Б. Основы стохастического анализа: учебное пособие // Ростов-на-Дону; Таганрог: Издательство Южного федерального университета, 2019. - 188 с. ISBN 978-5-9275-3132-5 https://hub.lib.sfedu.ru/repository/material/800919207/

7.4. Периодические издания. Нет

7.5. Перечень ресурсов сети Интернет, необходимых для освоения дисциплины

Университетская библиотека ONLINE http://biblioclub.ru/index.php?page=main_ub_red

7.6. Программное обеспечение информационно-коммуникационных технологий

- 1. Microsift Windows
- 2. Microsift Office
- 3. Python (свободное ПО).
- 4. MicrosoftTeams

VIII. МАТЕРИАЛЬНО -ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Учебно-лабораторное оборудование

При проведении дисциплины учащиеся должны быть обеспечены:

- 1. Лекционной аудиторией.
- 2. Аудиторией для лабораторных занятий с аппаратными и программными средствами в соответствии с реализуемой учебной тематикой.

8.2. Программные средства

- 1. Операционная система Microsoft Windows
- 2. Офисный пакет Microsoft Office
- 3. Средства для работы с языком Python (Anaconda, Jupyter Notebook).
- 4. MicrosoftTeams

IX. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Методические указания приведены в источниках, указанных в разделах 7.1, 7.5.

УЧЕБНАЯ КАРТА ДИСЦИПЛИНЫ

Избранные вопросы теории вероятностей и математической статистики

Трудоемкость: 5 зач.ед.

Форма промежуточной аттестации: экзамен

Курс 1, семестр 1

Код и наименование направления подготовки (специальности): 01.04.02 «Прикладная математика и информатика» (академическая магистратура)

Магистерская программа: «Искусственный интеллект: математические модели и прикладные решения»

Nº	Виды контрольных мероприятий	Теку	Рубе Текущий контроль кон (при н		
	Модуль 1.		10	10	
	Основы современной теории вероятностей				
1.1	Контрольная работа		10		
1.2	Индивидуальное задание			10	
	Модуль 3.		8	7	
	Математическая статистика				
2.1	Контрольная работа		8		
2.2	Индивидуальное задание			7	
	Модуль 3.		10	15	
	Элементы теории случайных процессов				
3.1	Контрольная работа		10		
3.2	Индивидуальные задания			15	
	Bcero		28	32	
	Бонусные баллы	нет			
	Промежуточная аттестация	до 40		ся в устной форме.	
	в форме экзамена	баллов	Критерии оценки у оценочных средст	•	

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Ростовский государственный экономический университет (РИНХ)»

Факультет компьютерных технологий и защиты информации Кафедра фундаментальной и прикладной математики

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

ИЗБРАННЫЕ ВОПРОСЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

Код и наименование направления подготовки/специальности: 01.04.02 «Прикладная математика и информатика»

Уровень образования:

Магистратура

Магистерская программа:

«Искусственный интеллект: математические модели и прикладные решения»

Форма обучения:

Очная

ПЕРЕЧЕНЬ КОМПЕТЕНЦИЙ, ФОРМИРУЕМЫХ ДИСЦИПЛИНОЙ

«Избранные вопросы теории вероятностей и математической статистики»

Код компетенции	Формулировка компетенции
1	2
ОПК	ОБЩЕПРОФЕССИОНАЛЬНЫЕ КОМПЕТЕНЦИИ
ОПК-1	Способен решать актуальные задачи фундаментальной и прикладной математики

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

«Избранные вопросы теории вероятностей и математической статистики»

№ п/п	Контролируемые разделы дисциплины*	Код контролируемой компетенции	Наименование оценочного средства**
1.	Основы современной теории вероятностей	ОПК-1	Контрольные работы, индивидуальные задания
2.	Математическая статистика	ОПК-1	Контрольные работы, индивидуальные задания
3.	Элементы теории случайных процессов	ОПК-1	Контрольные работы, индивидуальные задания

^{*} Наименование раздела указывается в соответствии с рабочей программой дисциплины.

МИНОБРНАУКИ РОССИИ

Министерство науки и высшего образования Российской Федерации

^{**}Наименование оценочного средства указывается в соответствии с учебной картой дисциплины.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ростовский государственный экономический университет (РИНХ)»

Факультет компьютерных технологий и защиты информации Кафедра фундаментальной и прикладной математики

Контрольные работы и индивидуальные задания по дисциплине

«Избранные вопросы теории вероятностей и математической статистики»

Модуль 1. Основы современной теории вероятностей (20 баллов)

Контрольная работа 1 (10 баллов)

Вариант 1.

- 1. (2 балла) Привести пример одинаково распределенных, но различных случайных величин.
- 2. (2 балла) Найти математическое ожидание и дисперсию равномерного распределения.
- 3. (3 балла) Проверить, что экспоненциальное распределение обладает свойством отсутствия памяти:

$$P(\xi \ge x + y | \xi \ge x) = P(\xi \ge x), \quad \xi \sim Exp(\lambda).$$

4. (3 баллов) Пусть ξ_i — независимые пуассоновские случайные величины с параметрами λ_i , $i=1,\dots,n$. Используя метод характеристических функций, доказать, что $\xi_1+\dots+\xi_n$ имеет распределение Пуассона с параметром $\lambda=\lambda_1+\dots+\lambda_n$.

Вариант 2.

1. (2 балла) Вывести формулу

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- 2. (2 балла) Найти математическое ожидание и дисперсию экспоненциального распределения.
- 3. (3 балла) Показать, что для независимых случайных величин $\xi_k \in L^2$ верно равенство

$$\sigma^2(\xi_1 + \dots + \xi_n) = \sum_{k=1}^n \sigma^2(\xi_k).$$

4. (3 баллов) Пусть $(\xi_k)_{k=1}^{\infty}$ — независимые одинаково распределенные случайные величины и Е $\xi_k = \mu$. Используя метод характеристических функций, доказать слабый закон больших чисел:

$$\frac{1}{n}(\xi_1 + \dots + \xi_n) \stackrel{d}{\to} \mu, \quad n \to \infty.$$

Индивидуальное задание 1 (10 баллов)

- 1. Пусть $A_1 \supseteq \cdots A_n \supseteq \cdots$ и $\bigcap_{i=1}^{\infty} A_i = A$. Используя аксиомы вероятностного пространства, доказать, что $\lim_{i \to \infty} \mathsf{P}(A_i) = \mathsf{P}(A)$.
- 2. Вывести неравенство Чебышёва

$$P(|\xi| \ge A) \le \frac{E|\xi|^r}{A^r}, \quad r > 0, A > 0.$$

Опираясь на это неравенство доказать, что из сходимости в L^r , r>0 вытекает сходимость по вероятности.

3. Пусть ξ : $\Omega \mapsto \mathbb{N}$. Доказать, что

$$\mathsf{E}\xi = \sum_{k=1}^{\infty} \mathsf{P}\left(\xi \ge k\right).$$

- 4. Пусть $\xi \in N(\mu, \sigma^2)$. Найти плотность случайной величины e^{ξ} (плотность логнормального распределения).
- 5. Пусть ξ , η независимы и экспоненциально распределены с параметрами λ , μ соотвественно. Найти плотность условного распределения ξ относительно η и показать, что

$$P(\xi \le \eta) = \frac{\lambda}{\lambda + \mu}.$$

6. Пусть ξ , η — независимые пуассоновские случайные величины с параметрами λ и μ соответственно. Показать, что

$$E(\xi|\xi+\eta) = \frac{\lambda}{\lambda+\mu}(\xi+\eta).$$

7. Установить равенство

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} \ dx = 1.$$

8. Найти математическое ожидание и дисперсию биномиального распределения. Выдаются 2 индивидуальных задания, каждое из которых которое оценивается в 5 баллов.

Модуль 2. Математическая статистика (15 баллов)

Контрольная работа 2 (8 баллов)

Вариант 1.

1. (2 балла) Найти оценку максимального правдоподобия параметра $\theta > 0$:

$$f(y; \theta) = \theta y^{\theta - 1}, y \in [0, 1].$$

2. (2 балла) Найти оценку максимального правдоподобия параметра $\theta \in \mathbb{R}$:

$$f(y; \theta) = \begin{pmatrix} \sqrt{2}\pi e^{-(x-\theta)^2/2}, & x \ge \theta \\ 0, & \text{иначе} \end{pmatrix}$$

3. (2 балла) Функция распределения случайной величины имеет вид

$$F(x; \theta) = x(7 + x^{\alpha})/8, x \in [0,1].$$

Найти оценку $\alpha > 0$ методом моментов.

4. (2 балла) Выразить эмпирическую функцию распределения последовательности $X_i^{1/3}$ через эмпирическую функцию распределения \widehat{F} последовательности X_i .

Вариант 2.

1. (2 балла) Для семейства плотностей

$$f(y;\theta) = 2y/\theta^2, y \in [0,\theta]$$

найти оценку параметра $\theta>0$ методом максимального правдоподобия.

2. (2 балла) Функция распределения случайной величины имеет вид

$$F(x; \theta) = \exp(-\theta/x^8), x > 0, \theta > 0.$$

Найти оценку θ методом максимального правдоподобия.

3. (2 балла) Для семейства плотностей

$$f(y;\theta) = \theta y^{\theta-1}, \quad y \in [0,1]$$

найти оценку параметра heta>0 методом моментов.

4. (2 балла) Пусть \widehat{F}_n и \widehat{G}_n — эмпирические функции распределения выборок X_1, \dots, X_n и Y_1, \dots, Y_n соответственно. Выразить эмпирическую функцию распределения \widehat{H}_n объединенной выборки $X_1, \dots, X_n, Y_1, \dots, Y_n$ через $\widehat{F}_n, \widehat{G}_n$.

Индивидуальное задание 2 (7 баллов)

Вариант 1.

1. (3 балла) $X_i{\sim}N(\mu,9.9)$, $\sum_{i=1}^{11}X_i=132$. Найти доверительный интервал для μ уровня доверия 0.95. Для какого значения k интервал

$$(12 - k\sqrt{0.9}, 12 + k\sqrt{0.9})$$

будет иметь уровень доверия 0.9?

1. (4 балла) $X_i \sim Ber(\theta)$, i = 1, ..., n,

$$H_0$$
: $\theta = \theta_0$, H_1 : $\theta = \theta_1$.

Рассмотреть случай $\theta_0=0.5>\theta_1,\;n=25.$ Построить оптимальные критерий отношения правдоподобия для уровней значимости $0.1,\;0.05,\;0.01.$ Сравнить с нормальной аппроксимацией.

Вариант 2. Пусть

$$P_{\theta_0}(X_1 = -1) = P_{\theta_0}(X_1 = 0) = P_{\theta_0}(X_1 = 1) = 1/3$$

$$P_{\theta_1}(X_1 = -1) = 0.4$$
, $P_{\theta_1}(X_1 = 0) = 0.2$, $P_{\theta_1}(X_1 = 1) = 0.4$

1. (3 балла) Найти распределение случайной величины

$$\Lambda(X) = \frac{f(X_1; \theta_1)}{f(X_1; \theta_0)}$$

относительно P_{θ_0} . Здесь $f(x;\theta_i)$ — вероятностная масса X_1 относительно P_{θ_i} .

2. (4 балла) Построить тест Неймана-Пирсона для проверки нулевой гипотезы $\theta=\theta_0$ против альтернативы $\theta=\theta_1$ на уровне значимости $\alpha=0.05$ по одному измерению X_1 .

Модуль 3. Элементы теории случайных процессов (25 баллов)

Контрольная работа 2 (10 баллов)

Вариант 1.

1. (3 балла) Пусть X — случайное блуждание: $X_0=0$, $X_n=Z_1+\cdots+Z_n$, где Z_i — независимые одинаково распределенные случайные величины такие, что

$$P(Z_i = 1) = p \in (0,1), P(Z_i = -1) = q = 1 - p.$$

Положим, что $Y_n = (q/p)^{X_n}$. Показать, что Y является положительным мартингалом относительно естественной фильтрации X.

- 2. (3 балла) Пусть X является мартингалом относительно фильтрации $(\mathcal{F}_t)_{t\geq 0}$. Показать, что X является мартингалом относительно естественной фильтрации $\sigma(X_s: 0 \leq s \leq t)_{t\geq 0}$.
- 3. (4 баллов) Пусть X, Y являются мартингалами. Показать, что $Z_n = X_n \vee Y_n$ является субмартингалом. Привести пример, когда Z не является мартингалом.

Вариант 2.

1. (3 балла) Пусть X — симметричное случайное блуждание:

$$X_0 = 0$$
, $X_n = Z_1 + \dots + Z_n$, $P(Z_n = 1) = P(Z_n = -1) = \frac{1}{2}$.

Показать, что процесс $Y_n = (-1)^n \cos(\pi X_n)$ является мартингалом относительно естественной фильтрации X.

- 2. (3 балла) Пусть X интегрируемый процесс с независимыми приращениями $X_{t_i} X_{t_{i-1}}$, $t_1 < \cdots < t_n$. Доказать, что $X_t EX_t$ является мартингалом относительно естественной фильтрации.
- 3. (4 баллов) Верно ли, что произведение мартингалов является мартингалом (субмартингалом, супермартингалом)?

Индивидуальное задание 3 (8 баллов)

Вариант 1.

- 1. (2 балла) Пусть W броуновское движение. Показать, что процесс $\exp(aW_t-a^2t/2)$ является мартингалом.
- 2. (3 баллов) Пусть au момент остановки. Доказать, что если σ $\mathcal{F}_{ au}$ -измеримая случайная величина и σ \geq au, то σ момент остановки.
- 3. (3 баллов) Пусть $(\xi_i)_{i=1}^{\infty}$ независимые случайные величины, $P(\xi_i=0)=P(\xi_i=2)=1/2$, и $X_n=\prod_{i=1}^n \xi_i$. Доказать, что не существует случайной величины ξ и фильтрации $(\mathcal{F}_n)_{n\geq 0}$ таких, что $\xi_n=E(\xi|\mathcal{F}_n)$.

Вариант 2.

- 1. (2 балла) Пусть $W=(W^1,\dots,W^n)-n$ -мерное броуновское движение (т.е. W^i- независимые одномерные броуновские движения). Найти $c\in\mathbb{R}$ такие, что $Ee^{c|W_t|}$ и $Ee^{c|W_t|^2}$ конечны.
- 2. (3 балла) W броуновское движение. Показать, что процесс $W_t^3 3 \int_0^t W_s \ \mathrm{d}s$ является мартингалом.
- 3. (4 баллов) Показать, что мартингал $M_t = \exp(aW_t a^2t/2)$, $a \neq 0$ не является равномерно интегрируемым (подсказка: доказать, что $M_t \to 0$, $t \to \infty$).

Индивидуальное задание 4 (7 баллов)

Вариант 1.

- 1. (3 балла) Пусть X симметричное случайное блуждание на \mathbb{Z}_+ и $Y_n = \sum_{k=0}^n I_{\{X_k \geq 1\}}$. Верно ли, что
- У является марковским процессом.
- Y_n является функцией X_n .
- X_n является функцией Y_n .
- Y_n является моментом остановки для каждого n.
- 2. (4 балла) Для марковской цепи с переходной матрицей

$$P = \begin{pmatrix} 0.5 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0.25 & 0 & 0 & 0 & 0 & 0 & 0.75 & 0 \end{pmatrix}$$

- Нарисовать граф переходных вероятностей и произвести разбиение состояний на классы.
- Указать все возвратные и невозвратные состояния. Найти периоды всех состояний.
- Вычислить $f_{13}^{(n)}$ для всех $n \in \mathbb{N}$.

Вариант 2.

- 1. (З балла) Пусть все классы марковской цепи возвратны, и пусть i и j такие состояния, что $i \to j$ (i достижимо из j). Верно ли, что
- для каждого состояния k верно, что $i \to k$ или $j \to k$.
- $j \rightarrow i$.
- $p_{ii} > 0$ или $p_{ii} > 0$.

•
$$\sum_{j=1}^{\infty} p_{jj}^{(n)} < \infty$$
.

2. (4 балла) Для марковской цепи с переходной матрицей

$$P = \begin{pmatrix} 0 & 0 & 1/2 & 0 & 0 & 1/2 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 & 0 \\ 1/3 & 0 & 1/3 & 0 & 0 & 1/3 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1/4 & 0 & 1/2 & 0 & 0 & 1/4 \end{pmatrix}$$

- а) Нарисовать граф переходных вероятностей, произвести разбиение состояний на классы и для каждого класса указать, замкнут ли он.
- b) Пусть цепь стартует в состоянии 2. Определить вероятность достижения состояния 6.
- с) Пусть цепь стартует в состоянии 3. Определить вероятность достижения состояния 6 в точности за n шагов.

Критерии оценивания

Для каждого задания указано максимальное количество баллов M. Студенту выставляется

M баллов, если работа выполнена полностью и оформлена в соответствии с предъявленными требованиями.

- 0.75*M баллов, если работа выполнена, но допущены неточности или ее оформление не соответствует предъявленным требованиям,
- 0.5*M баллов, если имеются существенные ошибки, но общая схема выполнения работы правильна,
- 0.25*M баллов, если выполнение работы было начато, но она выполнена лишь частично, существенные шаги не сделаны,

0 баллов, если работа не выполнена.

После суммирования всех набранных баллов, округление производится до ближайшего целого числа. Для допуска к экзамену необходимо набрать 38 баллов.

Вопросы к экзамену

по дисциплине «Избранные вопросы теории вероятностей и математической статистики»

- 1. Вероятностное пространство, независимость, прямое произведение вероятностных пространств
- 2. Условная вероятность, формула полной вероятности, правило умножения, формула Байеса.
- 3. Случайные переменные, интегрирование, распределение, математическое ожидание, дисперсия.

- 4. Дискретные и непрерывные случайные величины, формула замены переменных.
- 5. Характеристические функции. Многомерные нормальные случайные величины.
- 6. Виды сходимости случайных величин: с вероятностью 1, по вероятности, в L^r , по распределению.
- 7. Теорема о монотонной сходимости, теорема о мажорируемой сходимости, лемма Фату.
- 8. Теорема непрерывности, центральная предельная теорема, теорема Пуассона.
- 9. Условные математические ожидания и их свойства.
- 10. Условные математические ожидания случайных сумм.
- 11. Условные распределения, двумерные случайные величины.
- 12. Многомерные нормальные случайные величины.
- 13. Статистические модели, эмпирическое распределение, порядковые статистики, медиана, квантили, процентили, гистограмма.
- 14. Метод Монте-Карло.
- 15. Оценка параметров. Несмещенность, состоятельность. Метод моментов.
- 16. Оценка параметров. Метод максимального правдоподобия.
- 17. Информация Фишера. Неравенство Рао-Крамера.
- 18. Асимптотическая нормальность. Дельта-метод.
- 19. Доверительные интервалы.
- 29. Проверка гипотез. Ошибки I и II рода. Функция мощности. Простые гипотезы.
- 20. Лемма Неймана-Пирсона.
- 21. Критерии отношения правдоподобия для сложных гипотез.
- 22. Критерии согласия.
- 23. Линейная регрессия. Связь с методом максимального правдоподобия.
- 24. Свойства оценок метода наименьших квадратов.
- 25. Мартингалы с дискретным временем. Разложение Дуба.
- 26. Сходимость мартингалов, ограниченных в L^2 .
- 27. Момент остановки, сигма-алгебра событий, наблюдаемых до момента остановки, Теорема Дуба о свободном выборе.
- 28. Максимальные неравенства Дуба, теоремы о сходимости мартингалов, равномерная интегрируемость. Теорема Леви, закон 0 или 1 Колмогорова.
 - 39. Мартингалы с непрерывным временем, броуновское движение.
- 40. Мартингальные свойства броуновского движения. Ожидаемое время выхода из интервала, вероятность выхода через одну из границ, ожидаемое время достижения уровня, вероятность достижения уровня.
- 41. Марковские процессы. Уравнения Колмогорова-Чепмена. Примеры марковских процессов. Теоремы Колмогорова. Переходная функция броуновского движения.
 - 42. Фундаментальное уравнение. Приложения к случайным блужданиям.
- 43. Цепи Маркова с дискретным временем. Классификация состояний. Возвратность, положительная возвратность, периодичность.

Форма экзаменационного билета

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Ростовский государственный экономический университет (РИНХ)»

Факультет компьютерных технологий и защиты информации Кафедра фундаментальной и прикладной математики

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №

По дисциплине «Избранные вопросы теории вероятностей и математической статистики»

Факультет компьютерных технологий и защиты информации Кафедра фундаментальной и прикладной математики

Направление подготовки 01.04.02 «Прикладная математика и информатика»

- 1. Условная вероятность, формула полной вероятности, правило умножения, формула Байеса.
 - 2. Оценка параметров. Метод максимального правдоподобия.

Составитель

Заведующий кафедрой

Критерии оценивания

40 баллов — ответ полный и правильный; студент хорошо понимает дополнительные вопросы,

30 баллов — в ответе допущены две-три ошибки, исправленные после наводящих вопросов преподавателя,

22 балла — студент на идейном уровне понимает содержание материала понимает содержание материала, но затрудняется воспроизвести существенные технические детали,

10 баллов — студент понимает содержание поставленного в билете вопроса, но слабо ориентируется в содержании основного учебного материала, не может исправить сделанные ошибки при наводящих вопросах преподавателя,

0 баллов – ответ отсутствует.

Для успешной сдачи экзамена необходимо набрать 22 балла.