Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Макаренко Елена Николаевна

Должность: Ректор

Дата подписания: 15.04.2021 14:49:18 Министерство образования и науки Российской Федерации Уникальный программный ключ: с098bc0c1041cb2a4ct926ct17 1067 15099 абаес00асс8e27 b55cbe1e2dbd7/28 образования

«Ростовский государственный экономический университет (РИНХ)»

Dang

УТВЕРЖДАЮ
Первый проректор —
проректор по учебной работе
_ Н.Г. Кузнецов
«01» июня 2018г.

Рабочая программа дисциплины

МАТЕМАТИЧЕСКИЕ ОСНОВЫ ОБЕСПЕЧЕНИЯ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

Математика (математический анализ, алгебра и геометрия)

по профессионально-образовательной программе направление 10.03.01 "Информационная безопасность" профиль 10.03.01.02 "Организация и технология защиты информации"

Квалификация Бакалавр

Ростов-на-Дону $2018 \ \Gamma$.

Фундаментальная и прикладная математика

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	1 (1 (1.1)		2 (1.2)		Итого		
Недель	1	7,3	17,3					
Вид занятий	УП	РПД	УП	РПД	УП	РПД		
Лекции	36	36	36	36	72	72		
Практические	18	18	54	54	72	72		
В том числе инт.	24	24	20	20	44	44		
Итого ауд.	54	54	90	90	144	144		
Контактная работа	54	54	90	90	144	144		
Сам. работа	18	18	90	90	108	108		
Часы на контроль			36	36	36	36		
Итого	72	72	216	216	288	288		

ОСНОВАНИЕ

Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 10.03.01 "Информационная безопасность" (уровень бакалавриата) (приказ Минобрнауки России от 01.12.2016г. №1515)

Рабочая программа составлена по профессионально-образовательной программе направление 10.03.01 "Информационная безопасность" профиль 10.03.01.02 "Организация и технология защиты информации" Учебный план утвержден учёным советом вуза от 27.03.2018 протокол № 10.

Программу составил(и): к.т.н., доцент, Лукьянова Г.В. Ди, об. 18 Зав. кафедрой: д.фм.н проф. Стрюков М.Б.
Методическим советом направления: к.фм.н, доцент, Карасев Д.Н. Жари 29,051 18
Отделом образовательных программ и планирования учебного процесса Торопова Т.В.
Проректором по учебно-методической работе Джуха В.М 31.05.18

УП: 10.03.01_1.plx

УП: 10.03.01_1.plx

Визирование РПД для исполнения в очередном учебном году
Отдел образовательных программ и планирования учебного процесса Торопова Т.В.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2019-2020 учебном году на заседании кафедры Фундаментальная и прикладная математика
Зав. кафедрой д.фм.н проф. Стрюков М.Б.
Программу составил(и): к.т.н., доцент, Лукьянова Г.В
Визирование РПД для исполнения в очередном учебном году
Отдел образовательных программ и планирования учебного процесса Торопова Т.В.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2020-2021 учебном году на заседании кафедры Фундаментальная и прикладная математика
Зав. кафедрой д.фм.н проф. Стрюков М.Б.
Программу составил(и): к.т.н., доцент, Лукьянова Г.В
Визирование РПД для исполнения в очередном учебном году
Отдел образовательных программ и планирования учебного процесса Торопова Т.В.
- ''
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2021-2022 учебном году на заседании кафедры Фундаментальная и прикладная математика
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2021-2022 учебном году на
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2021-2022 учебном году на заседании кафедры Фундаментальная и прикладная математика
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2021-2022 учебном году на заседании кафедры Фундаментальная и прикладная математика Зав. кафедрой: д.фм.н проф. Стрюков М.Б.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2021-2022 учебном году на заседании кафедры Фундаментальная и прикладная математика Зав. кафедрой: д.фм.н проф. Стрюков М.Б. Программу составил(и): к.т.н., доцент, Лукьянова Г.В
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2021-2022 учебном году на заседании кафедры Фундаментальная и прикладная математика Зав. кафедрой: д.фм.н проф. Стрюков М.Б. Программу составил(и): к.т.н., доцент, Лукьянова Г.В Визирование РПД для исполнения в очередном учебном году
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2021-2022 учебном году на заседании кафедры Фундаментальная и прикладная математика Зав. кафедрой: д.фм.н проф. Стрюков М.Б. Программу составил(и): к.т.н., доцент, Лукьянова Г.В Визирование РПД для исполнения в очередном учебном году Отдел образовательных программ и планирования учебного процесса Торопова Т.В Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2022-2023 учебном году на

УП: 10.03.01 1.plx cтр. -

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1 Цели освоения дисциплины: овладение основами линейной алгебры, аналитической геометрии и математического анализа, приобретение навыков использования их универсального понятийного аппарата и широкого арсенала технических приемов при построении математических моделей различных экономических закономерностей и процессов.

1.2 Задачи при изучении данной дисциплины: обучающиеся должны уметь использовать математический аппарат для применения типовых методов контроля, оценки и обеспечения качества программной продукции.

2. MECTO	2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ									
Цикл (раздел) ООП: Б1.Б.13										
2.1 Требования к пред	дварительной подготовке обучающегося:									
2.1.1 для успешного осве школы: алгебра, ге-	рения дисциплины студент должен иметь базовую подготовку по математике в объеме средней ометрия.									
•	2.2 Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:									
2.2.1 Дискретная матема	тика									

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ОПК-2: способностью применять соответствующий математический аппарат для решения профессиональных заляч

Знать:

Знает только основные процедуры соответствующего математического аппарата.

2.2.2 Теория вероятностей и математическая статистика

VMeth

Умеет выполнять стандартные действия, применять соответствующий математический аппарат для решения типовых профессиональных задач.

Владеть:

Владеет навыками решения типовых профессиональных задач, способностью применять соответствующий математический аппарат для решения профессиональных задач

	4. СТРУКТУРА И СО	ОДЕРЖАН	ие дис	циплины	(МОДУЛЯ)		
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- пии	Литература	Интер акт.	Примечание
	Раздел 1. «Системы линейных уравнений и матрицы»						
1.1	Определители. Свойства определителей. Преобразование матриц Приведение матриц к ступенчатому виду. Схема метода Гаусса и системы линейных уравнений. Обоснование метода Жордана-Гаусса. /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
1.2	Определители. Свойства определителей. Преобразование матриц Приведение матриц к ступенчатому виду. Схема метода Гаусса и системы линейных уравнений. Обоснование метода Жордана-Гаусса. /Пр/	1	2	ОПК-2	Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	
1.3	Определители. Свойства определителей» Определитель и элементарные преобразования. Вычисление определителя разложением по строке. Метод Крамера решения системы линейных уравнений. Теорема Крамера /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	

УП: 10.03.01_1.plx стр. 5

1.4	«Матричные уравнения. Обратная матрица» Сложение матриц и умножение на число. Умножение матриц. Обратная матрица. Формула обратной матрицы. Метод нахождения обратной матрицы с помощью элементарных преобразований /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	
1.5	«Матричные уравнения. Обратная матрица» Сложение матриц и умножение на число. Умножение матриц. Обратная матрица. Формула обратной матрицы. Метод нахождения обратной матрицы с помощью элементарных преобразований /Пр/	1	2	ОПК-2	Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	
1.6	Ранг матрицы. Базисный минор» Ранг матрицы, линейная зависимость, базисный минор. Равенство ранга матрицы размеру ее базисного минора. Теорема о базисном миноре, вычисление базисного минора методом элементарных преобразований. /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	
1.7	Однородные системы линейных уравнений» Подпространство решений однородной системы линейных уравнений, его размерность и базис. Фундаментальная система решений. Критерий существования ненулевого решения у однородной системы линейных уравнений /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	
1.8	Ранг матрицы. Базисный минор» Ранг матрицы, линейная зависимость, базисный минор. Равенство ранга матрицы размеру ее базисного минора. Теорема о базисном миноре, вычисление базисного минора методом элементарных преобразований. /Пр/	1	2	ОПК-2	Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	
1.9	Однородные системы линейных уравнений» Подпространство решений однородной системы линейных уравнений, его размерность и базис. Фундаментальная система решений. Критерий существования ненулевого решения у однородной системы линейных уравнений /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	2	
1.10	"Матрицы" /Ср/	1	2	ОПК-2	Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
1.11	«Определители» /Ср/	1	2	ОПК-2	Л1.2 Л1.3 Л2.3 Э1	0	
1.12	"Алгоритм нахождения обратной матрицы" /Ср/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
1.13	"Метод Гаусса, Жордана-Гаусса" /Ср/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
1.14	«Предельный анализ в экономике" /Ср/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
1.15	«Алгоритм нахождекния ранга матрицы» /Ср/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
	Раздел 2. «Линейные пространства и линейные операторы»						

УП: 10.03.01_1.plx стр. 6

2.1	Основные определения линейного пространства Скаляры и векторы. Структура линейного пространства на множестве. Аксиоматика. Примеры. Свойства линейных пространств, вытекающие из определения. Линейная комбинация. /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	2	
2.2	Линейная зависимость и независимость векторов Линейная зависимость и независимость векторов. Координаты вектора. Необходимое и достаточное условие равенства нулю определителя. Определение ранга матрицы через миноры. Свойства ранга /Пр/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	2	
2.3	Линейно зависимые и линейно независимые системы векторов и их свойства. Два критерия линейной зависимости системы векторов /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	2	
2.4	Базис и размерность линейного конечномерного пространства. Полные системы векторов и базисы, их свойства. Размерность линейного пространства и базис. Теоремы о связи между размерностью и базисом. Конечномерные пространства. Описание полных систем в конечномерных пространствах. Дополнение линейно независимых систем векторов до базисов. /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
2.5	«Положительно определенные квадратичные функции» Критерий Сильвестра. Определитель Грама. Неравенство Коши-Буняковского /Пр/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	2	
2.6	«Координаты вектора в базисе» Координаты вектора в базисе и их свойства. Матрица перехода от одного базиса к другому и ее свойства. Преобразование координат вектора при переходе от одного базиса к другому. /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
2.7	« Подпространства линейного пространства. Примеры подпространств. Линейные оболочки и их свойства. Размерность и базис линейной оболочки. Скалярное произведение и структура евклидова пространства. Примеры. Длина вектора и угол между векторами. Их свойства. /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
2.8	Линейные операторы в линейном пространстве Матрица линейного оператора. Собственные векторы /Пр/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	2	
2.9	«Структура евклидова пространства». Скалярное произведение и структура евклидова пространства. Примеры. Длина вектора и угол между векторами. Их свойства. /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
	Раздел 3. «Геометрия прямой и плоскости»						
3.1	Действия над векторами Операции над векторами в трехмерном пространстве. Репер. Сложение векторов и умножение вектора на число. Векторы на прямой. Линейная зависимость. Геометрический смысл линейной зависимости. /Пр/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	

УП: 10.03.01_1.plx cтр. 7

	<u>'</u>						
3.2	Векторы в аналитической геометрии Предварительные теоретикомножественные понятия и факты. Отрезок и полупрямая. Полуплоскость и полупространство. Определение вектора. /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
3.3	Векторная алгебра Скалярное произведение векторов. Основные свойства проекций. Скалярное произведение векторов, заданных своими проекциями. Векторное произведение векторов. Смешанное произведение векторов. Основные свойства скалярного, векторного и смешанного произведений. /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
3.4	« Плоскость в пространстве » Нормальное уравнение плоскости. Расстояние от точки до плоскости. Взаимное расположение двух плоскостей. Угол между двумя плоскостями. Условия параллельности и перпендикулярности двух плоскостей. /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
3.5	Нормальное уравнение плоскости. Расстояние от точки до плоскости. Взаимное расположение двух плоскостей. Угол между двумя плоскостями. Условия параллельности и перпендикулярности двух плоскостей /Пр/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
3.6	« Прямая линия на плоскости» « Прямая линия на плоскости» Уравнение прямой с угловым коэффициентом. Уравнение прямой с угловым коэффициентом, проходящей через одну точку. Уравнение прямой, проходящей через две точки. Уравнение пучка прямых. Уравнение в отрезках. Нормальное уравнение прямой. Расстояние от точки до прямой /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
3.7	«Прямая линия в пространстве» Уравнение прямой как линии пересечения двух плоскостей. Параметрическое и каноническое уравнения прямой. Уравнение прямой, проходящей через две точки. Переход от общих уравнений прямой к каноническим. Взаимное расположение прямых в пространстве. /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
3.8	Уравнение прямой как линии пересечения двух плоскостей. Уравнение прямой как линии пересечения двух плоскостей. Параметрическое и каноническое уравнения прямой. Уравнение прямой, проходящей через две точки. Переход от общих уравнений прямой к каноническим. Взаимное расположение прямых в пространстве. /Пр/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	

УП: 10.03.01_1.plx стр. 8

				1	•		
3.9	«Взаимное расположение прямой и плоскости » Угол между прямой и плоскостью. Условие параллельности прямой и плоскости. Условие перпендикулярности прямой и плоскости. /Лек/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
3.10	Решение основных задач на прямую и плоскость /Cp/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
3.11	Решение задач с использованием проекции на ось и на плоскость. /Cp/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
3.12	Темы, определяемые преподавателем с учетом интересов студента /Cp/	1	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
3.13	/Зачёт/	1	0	ОПК-2	Л1.3 Л2.1 Л2.3 Э1	0	
	Раздел 4. «Кривые и поверхности второго порядка »						
4.1	Кривые второго порядка Окружность. Эллипс. Свойства эллипса. Гипербола. Свойства гиперболы. Парабола. Свойства параболы. /Лек/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
4.2	Окружность. Эллипс. Свойства эллипса. Окружность. Эллипс. Свойства эллипса. Гипербола. Свойства гиперболы. Парабола. Свойства параболы /Пр/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
4.3	Преобразование системы координат на плоскости Параллельный перенос системы координат. Поворот осей координат. Классификация кривых второго порядка. Приведение уравнений кривых второго порядка к каноническому виду. /Лек/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
4.4	Параллельный перенос системы координат Параллельный перенос системы координат. Поворот осей координат. /Пр/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
4.5	Классификация кривых второго порядка. Классификация кривых второго порядка. Приведение уравнений кривых второго порядка к каноническому виду /Пр/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
4.6	Поверхности второго порядка Сфера. Поверхности вращения. Эллипсоиды. Однополостный и двуполостный гиперболоиды. Параболоиды. /Лек/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
4.7	Сфера. Поверхности вращения. Сфера. Поверхности вращения. Эллипсоиды. Однополостный и двуполостный гиперболоиды. Параболоиды. /Пр/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
4.8	"Цилиндрические поверхности". Эллиптический, параболический и гиперболический цилиндры. Классификация поверхностей второго порядка. /Лек/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
4.9	"Цилиндрические и конические поверхности". Эллиптический, параболический и гиперболический цилиндры /Пр/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
4.10	Цилиндрические и конические поверхности». Конические поверхности. Конус /Пр/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	

УП: 10.03.01_1.plx стр. 9

				-			
4.11	Основные свойства поверхностей второго порядка Проективная классификация поверхностей второго порядка Уравнение, определяющее пересечение прямой с поверхностью второго порядка /Лек/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
4.12	"Касательная плоскость, центр, диаметры". Распадающиеся поверхности второго порядка. Условие совпадения /Пр/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
4.13	Пересечение линии второго порядка с прямой. Касательная. Уравнение, определяющее пересечение линии второго порядка с прямой, касательная к линии второго порядка. /Лек/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
4.14	«Пересечение линии второго порядка с прямой. Касательная» Касательная к линии второго порядка /Пр/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
4.15	Контрольная работа Контрольная работа по пройденному материалу. /Пр/	2	2	ОПК-2	Л1.2 Л1.3 Л2.2 Л2.3 Э1	0	
	Раздел 5. Введение. Элементы теории множеств и функций						
5.1	"Вещественные числа. Функции" Предмет математического анализа и его роль в экономической теории. Понятие отображения (функции), его области определения и области значений. Элементарные функции. Обратное отображение. Композиция отображений. Множество всех действительных чисел и множество всех точек числовой прямой, эквивалентность этих множеств /Лек/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	
5.2	"Свойства действительных чисел". Подмножества множества действительных чисел. Ограниченные (сверху, снизу) и неограниченные (сверху, снизу) множества. Наибольший (наименьший) элемент множества. Верхняя (нижняя) грань множества /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	
5.3	"Предел и непрерывность функции одной переменной" Предел числовой последовательности. Существование предела у ограниченной монотонной последовательности. Лемма о вложенных отрезках. Теорема Больцано -Вейерштрасса. Предел функции одной переменной. Односторонние и двусторонние пределы /Лек/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	
5.4	"Бесконечно малые (бесконечно большие) величины". Бесконечно малые и бесконечно большие величины и их связь с пределами функци. /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	
5.5	"Функции одной переменной, не имеющие предела." Функции одной переменной, не имеющие предела в точке и на бесконечности. Первый и второй замечательные пределы /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	

УП: 10.03.01_1.plx cтp. 10

5.6	"Производная и дифференциал функции	2	2	ОПК-2	Л1.1 Л1.2	2	1
	одной переменной". Понятие производной функции одной переменной. Геометрическая и экономическая интерпретации производной. Уравнение касательной. Понятие дифференцируемой функции. Необходимое и достаточное условие дифференцируемости. Связь непрерывности и дифференцируемости функции одной переменной. Производная суммы, произведения, частного, сложной и обратной функции. Дифференцирование функций, заданных параметрически /Лек/				Л1.3 Л2.1 Л2.2 Л2.3 Э1		
5.7	"Производные основных элементарных функций" Производные основных элементарных функций. Понятие дифференциала функции одной переменной. Геометрическая интерпретация дифференциала. /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.2 Л2.3 Э1	2	
5.8	"Исследование дифференцируемых функций одной переменной" Понятие об экстремумах функции одной переменной. Локальный экстремум (внутренний и граничный) функции одной переменной. Необходимое условие внутреннего локального экстремума (теорема Ферма). Правило Лопиталя. Формулы Тейлора и Маклорена и их использование для представления и приближенного вычисления значений функций. /Лек/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	
5.9	Исследование функции с использованием первой и второй производных Достаточное условие строгого возрастания (убывания) функции на интервале. Достаточные условия локального экстремума функции одной переменной. Точка перегиба. Необходимое и достаточное условия точки перегиба. /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
5.10	Определение глобального максимума (минимума). Исследование функции одной переменной с использованием первой и второй производных и построение ее графика /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	
5.11	Множества точек и последовательности в п-мерном пространстве. Множество всех двумерных векторов. п-мерные вектора. Понятие окрестности точки, окрестности с выколотым центром. Понятие предельной, внутренней и граничной точек точечного множества на плоскости и в п-мерном пространстве. Открытые и замкнутые множества на плоскости и в п-мерном пространстве. Неравенство Коши- Буняковского, неравенство треугольника. Множества ограниченные, неограниченные. Замкнутость /Лек/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	2	

УП: 10.03.01 1.plx cтр. 1

5.12	Последовательность точек на плоскости и в п-мерном пространстве. Последовательность точек на плоскости и в п-мерном пространстве. Понятие ограниченной и неограниченной последовательности точек. Взаимосвязь с покоординатной сходимостью. /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
5.13	Функции нескольких переменных. Функции двух переменных. Обобщение на случай функций нескольких переменных. Предел функции нескольких переменных. Предел функции по направлению. Понятие о сложной функции. Непрерывность сложной функции /Лек/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
5.14	"Предел функции двух переменных". Предел функции двух переменных. Непрерывность функции двух переменных /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
5.15	Предел функции по направлению. Понятие о сложной функции. Непрерывность сложной функции. /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
	Раздел 6. "Непрерывность, дифференцируемость и интегрируемость функций"						
6.1	Дифференцирование функций нескольких переменных Производная по направлению. Ортогональность градиента и множества уровня функции нескольких переменных в точке ее дифференцируемости. Формула Тейлора для функций нескольких переменных. Матрица Гессе /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
6.2	Частные производные и частные дифференциалы. Градиент функции нескольких переменных. Дифференцируемость функции нескольких переменных. Главная линейная часть приращения функции нескольких переменных. Полный дифференциал функции нескольких переменных. Дифференцируемость сложных функций нескольких переменных . Частные производные и дифференциалы порядка выше первого. Теорема о равенстве смешанных частных производных /Лек/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
6.3	Полный дифференциал функции нескольких переменных. Полный дифференциал функции нескольких переменных. Дифференцируемость сложных функций нескольких переменных . Частные производные и дифференциалы порядка выше первого. сложных функций нескольких переменных . Частные производные и дифференциалы порядка выше первого /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	

УП: 10.03.01 1.plx cтp. 12

6.4	Теория неявных функций Теоремы о	2	2	ОПК-2	Л1.1 Л1.2	0	
	существовании и гладкости неявных функций и их геометрическая интерпретация. Матрица Якоби и якобиан /Лек/				Л1.3 Л2.1 Л2.2 Л2.3 Э1		
6.5	"Формулы для частных производных и дифференциалов неявных функций." Формулы для частных производных и дифференциалов неявных функций. Матрица Якоби и якобиан /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
6.6	"Приложения дифференциального исчисления функций нескольких переменных". Экстремум функции нескольких переменных (локальный, глобальный) /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
6.7	Экстремум функции нескольких переменных (локальный, глобальный) Экстремум функции нескольких переменных (локальный, глобальный). Необходимое условие локального абсолютного экстремума. Знакоопределенность квадратичной формы. /Лек/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
6.8	Двойные интегралы. Свойства двойного интеграла. Сведение двойного интеграла к повторному. Замена переменных в двойном интеграле /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
6.9	Понятие двойного интеграла и его геометрическая интерпретация. Свойства двойного интеграла. Сведение двойного интеграла к повторному. Замена переменных в двойном интеграле /Лек/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
6.10	Криволинейные интегралы Криволинейные интегралы первого типа. Вычисление криволинейных интегралов первого типа. Криволинейные интегралы второго типа. Вычисление криволинейных интегралов второго типа Формула Грина — Остроградского. Независимость криволинейного интеграла от пути интегрирования. /Лек/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
6.11	Вычисление криволинейных интегралов первого типа. Вычисление криволинейных интегралов первого типа. Вычисление криволинейных интегралов второго типа Формула Грина — Остроградского /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
6.12	Вычисление криволинейных интегралов второго типа Независимость криволинейного интеграла от пути интегрирования /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
6.13	Числовые, функциональные и степенные ряды Понятие о числовых рядах. Сходящиеся и расходящиеся ряды. Необходимое условие сходимости ряда. Признаки сходимости для знакопостоянных и знакочередующихся рядов. Абсолютная и условная сходимость знакопеременных рядов. /Лек/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	

/TI: 10.03.01 1.plx ctp. 13

_ ,,	T. ~		T -	0		_	
6.14	Функциональные ряды. Сходимость и равномерная сходимость ряда. Функциональные ряды. Сходимость и равномерная сходимость функционального ряда. Степенные ряды. Промежуток и радиус сходимости степенного ряда. Формула для вычисления радиуса сходимости. Понятие ряда Тейлора и приближенные вычисления с помощью рядов Тейлора /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
6.15	Признаки сходимости для знакопостоянных и знакочередующихся рядов. Абсолютная и условная сходимость знакопеременных рядов. Степенные ряды. Промежуток и радиус сходимости степенного ряда. Формула для вычисления радиуса сходимости. Понятие ряда Тейлора и приближенные вычисления с помощью рядов Тейлора /Пр/	2	2	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.1 Л2.2 Л2.3 Э1	0	
6.16	Дифференцируемость сложных функций нескольких переменных /Ср/	2	9	ОПК-2	Л1.1 Л1.2 Л1.3 Л2.3 Э1	0	
6.17	Теорема о существовании и гладкости обратной функции /Cp/	2	9	ОПК-2	Л1.1 Л1.3 Л2.3 Э1	0	
6.18	Необходимое условие локального абсолютного экстремума /Cp/	2	9	ОПК-2	Л1.1 Л1.3 Л2.3 Э1	0	
6.19	Понятие окрестности действительного числа (точки). /Ср/	2	9	ОПК-2	Л1.1 Л1.3 Л2.3 Э1	0	
6.20	Темы, определяемые преподавателем с учетом интересов студента /Cp/	2	9	ОПК-2	Л1.1 Л1.3 Л2.3 Э1	0	
6.21	Символы о-малое и О-большое и их использование /Ср/	2	9	ОПК-2	Л1.1 Л1.3 Л2.3 Э1	0	
6.22	Открытые и замкнутые множества на плоскости /Cp/	2	9	ОПК-2	Л1.1 Л1.3 Л2.3 Э1	0	
6.23	Вычисление криволинейных интегралов /Ср/	2	9	ОПК-2	Л1.1 Л1.3 Л2.3 Э1	0	
6.24	Равномерная сходимость функционального ряда /Ср/	2	9	ОПК-2	Л1.1 Л1.3 Л2.3 Э1	0	
6.25	Непрерывность суммы функционального ряда /Ср/	2	9	ОПК-2	Л1.1 Л1.3 Л2.3 Э1	0	
6.26	/Экзамен/	2	36	ОПК-2	Л1.2 Л1.3 Л2.3 Э1	0	

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Фонд оценочных средств для проведения промежуточной аттестации

Вопросы к зачету

1. Преобразования матриц и системы линейных уравнений. Обратимость элементарных преобразований. Метод Гаусса.

2. Определители. Определитель квадратной матрицы. Свойства определителей. Миноры, алгебраические дополнения, разложение определителя по элементам строки и столбца. Метод Крамера решения системы линейных уравнений (формулировка).

УП: 10.03.01_1.plx стр. 14

3. Действия с матрицами. Обратная матрица. Формула обратной матрицы. Метод нахождения обратной матрицы с помощью элементарных преобразований.

- 4. Системы уравнений. Матричные уравнения. Решение матричных уравнений с помощью нахождения обратной матрицы.
- Ранг матрицы, линейная зависимость, базисный минор. Обоснование связи ранга матрицы и размера ее базисного минора.
 Теорема о базисном миноре, вычисление базисного минора методом элементарных преобразований.
- 6. Системы линейных уравнений. Теорема Кронекера-Капелли.
- 7. Линейные пространства. Линейная комбинация элементов пространства. Линейная независимость. Базис линейного пространства. Размерность линейного пространства.
- 8. Координаты вектора, матрицы перехода. Вычисление матрицы перехода при помощи элементарных преобразований. Изменение координат вектора при замене базиса.
- 9. Ортонормированная система элементов. Обоснование связи свойств линейной независимости и ортонормированности системы. Построение ортонормированной системы по методу Шмидта.
- 10. Линейные операторы. Основные определения. Действия с линейными операторами. Матрица линейного оператора. Преобразование матрицы линейного оператора при изменении базиса.
- 11. Собственные значения и собственные векторы матрицы линейного оператора. Характеристическое уравнение и характеристический многочлен квадратной матрицы. Свойства собственных векторов симметрической матрицы.
- 12. Нахождение собственных значений и собственных векторов матрицы линейного оператора. Теорема о собственных векторах, соответствующих различным собственным значениям.
- 13. Квадратичные формы в линейном пространстве. Запись в векторно-матричной форме. Знакоопределенность. Критерий Сильвестра.
- 14. Скалярное произведение двух векторов. Свойства. Геометрический смысл. Коллинеарные векторы. Вычисление скалярного произведения через декартовы координаты векторов. Длина вектора. Угол между векторами. Ортогональность векторов.
- 15. Ориентация тройки векторов. Векторное произведение. Геометрический смысл. Геометрические свойства. Вычисление векторного произведения через декартовы координаты векторов.
- 16. Смешанное произведение векторов и его свойства. Геометрический смысл. Компланарные векторы, геометрический смысл. Смешанное произведение компланарных векторов.
- 17. Вычисление смешанного произведения через декартовы координаты векторов. Условия коллинеарности и компланарности векторов при их задании в координатном виде. Изменение знака смешанного произведения при изменении порядка векторов. Линейность смешанного произведения.
- 18. Прямая линия на плоскости. Параметрическое представление прямой (в векторном и координатном виде). Каноническое представление прямой.
- 19. Общее уравнение прямой на плоскости и нормальный вектор. Уравнение прямой, проходящей через данную точку с заданным нормальным вектором. Уравнение прямой, проходящей через две данные точки. Формула расстояния от точки до прямой.
- Простейшие задачи на прямую на плоскости. Вычисление угла между прямыми. Условия параллельности и перпендикулярности прямых. Расстояние от точки до прямой..

Вопросы к экзамену

- 1. Преобразования матриц и системы линейных уравнений. Обратимость элементарных преобразований. Метод Гаусса.
- 2. Определители. Определитель квадратной матрицы. Свойства определителей. Миноры, алгебраические дополнения, разложение определителя по элементам строки и столбца. Метод Крамера решения системы линейных уравнений (формулировка).
- 3. Действия с матрицами. Обратная матрица. Формула обратной матрицы. Метод нахождения обратной матрицы с помощью элементарных преобразований.
- 4. Системы уравнений. Матричные уравнения. Решение матричных уравнений с помощью нахождения обратной матрицы.
- 5. Ранг матрицы, линейная зависимость, базисный минор. Обоснование связи ранга матрицы и размера ее базисного минора. Теорема о базисном миноре, вычисление базисного минора методом элементарных преобразований.
- 6. Системы линейных уравнений. Теорема Кронекера-Капелли.
- 7. Линейные пространства. Линейная комбинация элементов пространства. Линейная независимость. Базис линейного пространства. Размерность линейного пространства.
- 8. Координаты вектора, матрицы перехода. Вычисление матрицы перехода при помощи элементарных преобразований. Изменение координат вектора при замене базиса.
- 9. Ортонормированная система элементов. Обоснование связи свойств линейной независимости и ортонормированности системы. Построение ортонормированной системы по методу Шмидта.
- 10. Линейные операторы. Основные определения. Действия с линейными операторами. Матрица линейного оператора. Преобразование матрицы линейного оператора при изменении базиса.
- 11. Собственные значения и собственные векторы матрицы линейного оператора. Характеристическое уравнение и характеристический многочлен квадратной матрицы. Свойства собственных векторов симметрической матрицы.
- 12. Нахождение собственных значений и собственных векторов матрицы линейного оператора. Теорема о собственных векторах, соответствующих различным собственным значениям.
- 13. Квадратичные формы в линейном пространстве. Запись в векторно-матричной форме. Знакоопределенность. Критерий Сильвестра.
- Скалярное произведение двух векторов. Свойства. Геометрический смысл. Коллинеарные векторы. Вычисление скалярного произведения через декартовы координаты векторов. Длина вектора. Угол между векторами. Ортогональность

УП: 10.03.01_1.plx cтр. 15

векторов.

15. Ориентация тройки векторов. Векторное произведение. Геометрический смысл. Геометрические свойства. Вычисление векторного произведения через декартовы координаты векторов.

- 16. Смешанное произведение векторов и его свойства. Геометрический смысл. Компланарные векторы, геометрический смысл. Смешанное произведение компланарных векторов.
- 17. Вычисление смешанного произведения через декартовы координаты векторов. Условия коллинеарности и компланарности векторов при их задании в координатном виде. Изменение знака смешанного произведения при изменении порядка векторов. Линейность смешанного произведения.
- 18. Прямая линия на плоскости. Параметрическое представление прямой (в векторном и координатном виде). Каноническое представление прямой.
- 19. Общее уравнение прямой на плоскости и нормальный вектор. Уравнение прямой, проходящей через данную точку с заданным нормальным вектором. Уравнение прямой, проходящей через две данные точки. Формула расстояния от точки до прямой.
- 20. Простейшие задачи на прямую на плоскости. Вычисление угла между прямыми. Условия параллельности и перпендикулярности прямых. Расстояние от точки до прямой.
- Плоскость в трехмерном пространстве. Общее уравнение плоскости. Параметрическое представление плоскости.
 Нормальное уравнение плоскости. Связь между различными формами уравнения.
- 22. Вычисление угла между плоскостями. Условия параллельности и перпендикулярности плоскостей. Расстояние от точки до плоскости.
- 23. Прямая линия в пространстве. Уравнения прямой линии в пространстве. Расстояние между скрещивающимися прямыми.
- 24. Основные задачи на плоскость и прямую в пространстве. Взаимное расположение двух прямых, прямой и плоскости, двух плоскостей. Угол между плоскостями. Расстояние от точки до плоскости, от точки до прямой.
- 25. Кривые второго порядка на плоскости. Эллипс. Геометрическое определение и каноническое уравнение. Свойства. Фокусы и директрисы.
- 26. Кривые второго порядка на плоскости. Гипербола. Геометрическое определение и каноническое уравнение. Свойства. Фокусы и директрисы.
- 27. Кривые второго порядка на плоскости. Парабола. Геометрическое определение и каноническое уравнение. Свойства. Фокус и директриса.
- 28. Поверхности второго порядка. Цилиндрические и конические поверхности.
- 29. Поверхности второго порядка. Поверхности вращения.
- 30. Последовательность. Предел последовательности. Свойства пределов последовательности.
- 31. Предел функции.
- 32. Основные теоремы о пределах функции.
- 33. Бесконечно малые функции. Их свойства.
- 34. Сравнение бесконечно малых функций. Эквивалентные бесконечно малые.
- 35. Бесконечно большие функции. Их свойства.
- 36. Непрерывность функции. Основные понятия.
- 37. Точки разрыва, их классификация. Примеры.
- 38. Свойства функций, непрерывных в точке.
- 39. Дифференциал. Геометрическая интерпретация.
- 40. Производная функции в точке. Геометрическая интерпретация.
- 41. Основные теоремы о дифференцируемых функциях.
- 42. Производные основных элементарных функций.
- 43. Производная сложной функции. Производная функции, заданной неявно. Производная функции, заданной параметрически.
- 44. Правило Лопиталя.
- 45. Использование производной для исследования функций на монотонность, экстремум, выпуклость, вогнутость. Точки перегиба.
- 46. Производные высших порядков функции одной переменной.
- 47. Первообразная. Неопределенный интеграл. Свойства неопределенного интеграла.
- 48. Методы интегрирования: замена переменной.
- 49. Методы интегрирования: интегрирование по частям.
- 50. Методы интегрирования некоторых классов элементарных функций: элементарные дроби, рациональные функции.
- 51. Определенный интеграл. Геометрический смысл.
- 52. Свойства определенного интеграла.
- 53. Формула Ньютона-Лейбница.
- 54. Несобственные интегралы. Сходимость и расходимость несобственных интегралов.
- 55. Производные функции нескольких переменных.
- 56. Производные сложной функции многих переменных.
- 57. Производные высших порядков функции многих переменных.
- 58. Локальный экстремум функции многих переменных. Необходимое и достаточное условие экстремума.
- 59. Локальный условный экстремум функции многих переменных. Необходимое и достаточное условие экстремума.
- 60. Нахождение наибольшего и наименьшего значений функции нескольких переменных в ограниченной замкнутой области.
- 61. Вычисление двойного интеграла по области, заданной неравенствами.

УП: 10.03.01_1.plx cтр. 16

62. Изменение порядка интегрирования при вычислении двойного интеграла.

5.2. Фонд оценочных средств для проведения текущего контроля

Структура и содержание фонда оценочных средств представлены в Приложении1 к рабочей программе дисциплины

6	5. УЧЕБНО-МЕТОДИ	ЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕ ^В	чение дисциплин	Ы (МОДУЛЯ)
		6.1. Рекомендуемая литература		
		6.1.1. Основная литература		
	Авторы, составители	Заглавие	Издательство, год	Колич-во
Л1.1	Кытманов А. М., Лейнартас Е. К., Лукин В. Н., Ходос О. В., Черепанова О. Н., Шипина Т. Н., Кытманов А. М.	Математический анализ: учеб. пособие для бакалавров	М.: Юрайт, 2012	200
Л1.2	Кремер Н. Ш.	Высшая математика для экономистов: учеб. для вузов	М.: ЮНИТИ-ДАНА, 2008	59
Л1.3	Н.Ш., Кремер, Б.А. Путко, И. М.Тришин, М.Н. Фридман	Высшая математика для экономистов: учебник [Электронный ресурс] URL:http://biblioclub.ru/index.php?page=search	Юнити-Дана, 2012	http://biblioclub.ru/ неограниченный доступ для зарегистрированн ых пользователей
		6.1.2. Дополнительная литератур	oa e e e e e e e e e e e e e e e e e e e	
	Авторы, составители	Заглавие	Издательство, год	Колич-во
Л2.1	Малугин В. А., Фадеева Л. Н.	Количественный анализ в экономике и менеджменте: учеб. для студентов вузов, обучающихся по напр. подгот. 080100 "Экономика"	М.: ИНФРА-М, 2014	30
Л2.2	Гусак А. А.	Справочное пособие по решению задач: аналитическая геометрия и линейная алгебра	Минск: ТетраСистемс, 1998	35
Л2.3	Солодовников А. С. и др.	Математика в экономике: учебник [Электронный ресурс] URL:http://biblioclub.ru/index.php? page=book_view_red&book_id=86078	,	http://biblioclub.ru/ неограниченный доступ для зарегистрированн ых пользователей
	6.2. Переч	ень ресурсов информационно-телекоммуникаг	ционной сети "Интернет	Γ''
Э1		ике. Основы математики : учебник / М.С. Красс, 178-5-279-03071-2; http://biblioclub.ru/index.php?		нансы и статистика,
	•	6.3. Перечень программного обеспеч	ения	
6.3.	1 Microsoft Office			
	•	6.4 Перечень информационных справочн	ых систем	
6.4.	1 Консультант +			

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1 Помещения для проведения всех видов работ, предусмотренных учебным планом, укомплектованы необходимой специализированной учебной мебелью и техническими средствами обучения. Для проведения лекционных занятий используется демонстрационное оборудование.

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Методические указания по освоению дисциплины представлены в Приложении 2 к рабочей программе дисциплины.

Приложение 1 к рабочей программе

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Ростовский государственный экономический университет (РИНХ)»

Рассмотрено и одобрено на заседании кафедры Фундаментальной и прикладной математики

Протокол № 10 от «» <u>24.05</u> 201<u>8</u>г. Зав.кафедрой проф. Стрюков М. Б.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

Математика (математический анализ, алгебра и геометрия) (наименование дисциплины)

Направление подготовки

10.03.01 «Информационная безопасность»

Профиль

10.03.01.02 «Организация и технология защиты информации»

Уровень образования <u>Бакалавриат</u>

Составитель:

Батищева Г.А., проф. каф. ФиПМ, д.э. н., доцент Лукьянова Г.В., доцент каф. каф. ФиПМ, к.т. н., доцент опись) Ф.И.О., должность, ученая степень, ученое звание

Ростов-на-Дону, 2018

1.	Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы	3
2.	Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания	3
3.	Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы	6
4.	Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций	14

1 Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

1.1 Перечень компетенций с указанием этапов их формирования представлен в п. 3. «Требования к результатам освоения дисциплины» рабочей программы дисциплины.

2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

2.1 Показатели и критерии оценивания компетенций:

ЗУН,	Показатели	Критерии	Средства				
составляющие	оценивания	оценивания	оценивания				
компетенцию							
·							
ОПК-2 — способносты	ОПК-2 — способностью применять соответствующий математический аппарат для						
решения профессионал	решения профессиональных задач						
3 Основы	Подготовка к	Полнота и	УО – устный опрос,				
математического	практическим	содержательность					
анализа и линейной	занятиям по темам,	ответа;	С -собеседование,				
алгебры, в том числе:	изложенным на		К3 – контрольное				
теорию пределов и	лекциях;	умение приводить	задание,				
непрерывных	VCTULIO IA FIACI MOULUIO	примеры;					
функций,	устные и письменные ответы на	умение отстаивать	ИЗ —				
дифференциальное и	практических	свою позицию;	индивидуальное				
интегральное	занятиях по темам		задание				
исчисление, теорию	занятий;	умение					
функций многих	,	пользоваться дополнительной					
переменных и ряды,	выполнение	литературой при					
теорию матриц и систем линейных	расчетных	подготовке к					
уравнений, векторные	(индивидуальных)	занятиям;					
и евклидовы	заданий по	,					
пространства, теорию	пройденному	соответствие					
операторов и	материалу;	представленной в					
квадратичные формы,	подготовка к	ответах					
элементы	запланированным	информации					
аналитической	контрольным	материалам лекции					
геометрии, кривые		и учебной					
второго порядка,	балльно-рейтингового	литературы, сведениям из					
необходимые для	оценивания.	информационных					
развития способности		ресурсов Интернет;					
анализировать		[
состояние и динамику		объем					
объектов		выполненных					

деятельности контрольных и расчетных У Применять методы (индивидуальных) математического работ (в полном, не анализа И полном объеме). аналитической геометрии для решения экономических задач, в том числе: методы теории пределов и непрерывных функций, дифференциальное и интегральное исчисление, теорию функций многих переменных, дифференциальные уравнения и ряды, теорию матриц систем линейных уравнений, векторные И евклидовы пространства, теорию операторов квадратичные формы, элементы аналитической геометрии,, необходимые при проведении анализа состояния и динамики объектов экономической деятельности В Владеть методами решения задач математического анализа и линейной алгебры, развивающими способность использовать полученные знания при проведении анализа состояния и динамики

объектов		

3.2 Шкалы оценивания:

Текущий контроль успеваемости и промежуточная аттестация осуществляется в рамках накопительной балльно-рейтинговой системы в 100-балльной шкале.

Основой для определения баллов, набранных при промежуточной аттестации, служит объём и уровень усвоения материала, предусмотренного рабочей программой дисциплины. При этом необходимо руководствоваться следующим:

- 84-100 баллов (оценка «отлично») изложенный материал фактически верен, наличие глубоких исчерпывающих знаний в объеме пройденной программы дисциплины в соответствии с поставленными программой курса целями и задачами обучения; правильные, уверенные действия по применению полученных знаний на практике, грамотное и логически стройное изложение материала при ответе, усвоение основной и знакомство с дополнительной литературой;
- 67-83 баллов (оценка «хорошо») наличие твердых и достаточно полных знаний в объеме пройденной программы дисциплины в соответствии с целями обучения, правильные действия по применению знаний на практике, четкое изложение материала, допускаются отдельные логические и стилистические погрешности, обучающийся усвоил основную литературу, рекомендованную в рабочей программе дисциплины;
- 50-66 баллов (оценка удовлетворительно) наличие твердых знаний в объеме пройденного курса в соответствии с целями обучения, изложение ответов с отдельными ошибками, уверенно исправленными после дополнительных вопросов; правильные в целом действия по применению знаний на практике;
- 0-49 баллов (оценка неудовлетворительно) ответы не связаны с вопросами, наличие грубых ошибок в ответе, непонимание сущности излагаемого вопроса, неумение применять знания на практике, неуверенность и неточность ответов на дополнительные и наводящие вопросы».
- 3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

3.1 Вопросы к экзамену

по дисциплине Математика (математический анализ, алгебра и геометрия)

Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение
высшего образования

«Ростовский государственный экономический университет (РИНХ)»

Кафедра Фундаментальной и прикладной математики

Вопросы к зачету (1 семестр)

- 1. Понятие матрицы. Виды матриц. Линейные операции над матрицами. Умножение матриц.
- 2. Понятие определителей и их основные свойства. Миноры и алгебраические дополнения.
- 3. Алгоритм вычисления обратной матрицы. Свойства обратной матрицы.
- 4. Матричные уравнения и их решения.
- 5. Системы линейных уравнений. Основные определения: решение, совместность, несовместность, определенность, неопределенность.
- 6. Формулы Крамера.
- 7. Метод Жордана-Гаусса решения системы линейных уравнений общего вида. Равносильные преобразования систем, алгоритм метода Жордана-Гаусса, общее, частное, базисное решение; система, приведенная к единичному базису, базисные и свободные неизвестные.
- 8. Модифицированные жордановы исключения, их применение к решению систем линейных уравнений и отысканию базисных решений.
- 9. Матричная форма записи системы линейных уравнений. Матричный способ решения системы линейных уравнений.
- 10. Понятие п-мерного вектора. Линейные операции над п-мерными векторами. Пространство Rn.
- 11. Линейно зависимые и линейно независимые векторы.

- 12. Понятие базиса в пространстве Rn. Разложение вектора по базису.
- 13. Понятие скалярного произведения п-мерных векторов. Свойства скалярного произведения. Норма п-мерного вектора. Угол между векторами. Ортогональные векторы. Ортонормированный базис в пространстве Rn.
- 14. Линейные операторы. Понятие матрицы линейного оператора.
- 15. Собственные векторы и собственные значения линейного оператора (матрицы), их нахождение.
- 16. Квадратичные формы и их матричная запись. Приведение квадратичной формы к каноническому виду.
- 17. Прямая линия на плоскости. Общее уравнение прямой на плоскости.
- 18. Частные виды уравнения прямой на плоскости: уравнение с угловым коэффициентом, по двум точкам, уравнение пучка прямых. Геометрический смысл параметров, входящих в уравнения.
- 19. Угол между прямыми на плоскости; условие параллельности и перпендикулярности.
- 20. Кривые второго порядка, их канонические уравнения.

Вопросы к экзамену (2 семестр)

- 1. Понятие множества. Способы задания множеств. Операции над множествами.
- 2. Числовые функции. Понятие функции. Область существования, множество значений. Способы задания. График функции. Монотонные функции. Ограниченные функции. Сложная функция. Обратная функция. Элементарные функции и их классификация. Числовые последовательности.
- 3. Предел функций. Предельные точки множества. Конечные и бесконечные пределы функций в конечных и бесконечных предельных точках. Геометрический смысл понятий предела.
- 4. Бесконечно малые и бесконечно большие функции. Основные теоремы о бесконечно малых функциях. Связь между бесконечно малыми и бесконечно большими функциями. Основные теоремы о бесконечно больших функциях.
- 5. Основные теоремы о пределах.

- 6. Непрерывность функции. Два определения непрерывности функции в точке. Их эквивалентность.
- 7. Теоремы о непрерывности суммы, произведения и частного непрерывных функций. Непрерывность сложной функции. Непрерывность элементарных функций.
- 8. Условия непрерывности функций в точке. Точки разрыва и их классификация.
- 9. Основные теоремы о функциях непрерывных на отрезке.
- 10. Производная функции. Определение производной функции в точке и ее геометрический смысл. Уравнение касательной. Необходимое условие существования производной.
- 11. Основные правила дифференцирования. Производная сложной функции. Производная обратной функции.
- 12. Дифференциал функции и его геометрический смысл. Основные свойства дифференциала. Инвариантность формы дифференциала.
- 13. Теоремы о дифференцируемых функциях. Теорема Ферма ее геометрический смысл. Теорема Ролля и ее геометрический смысл. Теорема Лагранжа и ее геометрический смысл.
- 14. Экстремум функции. Необходимое условие экстремума. Первое достаточное условие экстремума. Второе достаточное условие экстремума.
- 15. Понятие выпуклости и вогнутости графика функции. Признаки выпуклости и вогнутости. Точки перегиба. Достаточное условие точки перегиба.
- 16. Неопределенный интеграл. Первообразная функция. Теорема о первообразных.
- 17. Неопределенный интеграл и его свойства. Таблица неопределенных интегралов.
- 18. Интегрирование по частям в неопределенном интеграле.
- 19. Определение определенного интеграла. Геометрический смысл определенного интеграла.
- 20. Теорема существования определенного интеграла.
- 21. Свойства определенного интеграла, выраженные равенствами.
- 22. Свойства определенного интеграла, выраженные неравенствами.

- 23. Теорема о среднем.
- 24. Определенный интеграл с переменным верхним пределом
- 25. Формула Ньютона-Лейбница.
- 26. Геометрические приложения определенного интеграла.
- 27. Несобственные интегралы 1-го рода и 2-го рода.
- 28. Понятие функции многих переменных. Открытый шар, открытый проколотый шар. Окрестность точки.
- 29. Предельная точки множества. Предел функции многих переменных.
- 30. Полное приращение функции многих переменных.
- 31. Непрерывность функции многих переменных. Частные приращения и частные производные.
- 32. Определение дифференцируемой функции многих переменных. Полный дифференциал. Теорема о дифференцируемой функции многих переменных.
- 33. Понятие локального экстремума функции многих переменных.
- 34. Необходимое условие локального экстремума.
- 35. Частные производные высших порядков.
- 36. Достаточные условия локального экстремума.
- 37. Дифференциал второго порядка функции многих переменных.
- 38. Понятие условного экстремума функции многих переменных.
- 39. Необходимое условие существования условного экстремума.
- 40. Достаточное условие условного экстремума.
- 41. Числовой ряд. Частичная сумма ряда. Сходящийся ряд, расходящийся ряд. Сумма ряда.
- 42. Необходимый признак сходимости числового ряда. Следствие из обходимого признака.
- 43. Достаточные признаки сходимости рядов с положительными членами: сравнения, Даламбера, Коши, интегральный.
- 44. Знакопеременный ряд. Знакочередующийся ряд.

- 45. Признак Лейбница сходимости знакочередующегося ряда. Следствие из признака Лейбница.
- 46. Абсолютная и условная сходимость. Теорема о сходимости знакопеременного ряда
- 47. Степенной ряд. Радиус сходимости степенного ряда. Интервал сходимости, область сходимости
- 48. Ряды Тейлора и Маклорена

3.2.Экзаменационные билеты

Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение
высшего образования

«Ростовский государственный экономический университет (РИНХ)»

Кафедра Фундаментальной и прикладной математики

экзаменационный билет № 1 (1 семестр)

по дисциплине Математика (математический анализ, алгебра и геометрия)

- 1. Дать определение линейных операций над матрицами
- 2. Доказать теорему о линейной зависимости системы векторов, содержащей линейно-зависимую подсистему._
- 3. Найти точку пересечения прямой $\frac{x-2}{3} = \frac{y-3}{2} = \frac{z}{3}$ и плоскости x+2y-3z=6 .

Критерии оценивания

Результатом является проставление в зачетной книжке итогового количества баллов и соответствующей оценки, согласно следующей шкале перевода баллов 100-балльной шкалы в их числовые коэффициенты:

- 84-100 баллов (оценка «отлично») изложенный материал фактически верен, наличие глубоких исчерпывающих знаний в объеме пройденной программы дисциплины в соответствии с поставленными программой курса целями и задачами обучения; правильные, уверенные действия по применению полученных знаний на практике, грамотное и логически стройное изложение материала при ответе, усвоение основной и знакомство с дополнительной литературой;
- 67-83 баллов (оценка «хорошо») наличие твердых и достаточно полных знаний в объеме пройденной программы дисциплины в соответствии с целями обучения, правильные действия по применению знаний на практике, четкое изложение материала, допускаются отдельные логические и стилистические погрешности, студент усвоил основную литературу, рекомендованную в рабочей программе дисциплины;
- 50-66 баллов (оценка удовлетворительно) наличие твердых знаний в объеме пройденного курса в соответствии с целями обучения, изложение ответов с отдельными ошибками, уверенно исправленными после дополнительных вопросов; правильные в целом действия по применению знаний на практике;
- 0-49 баллов (оценка неудовлетворительно) ответы не связаны с вопросами, наличие грубых ошибок в ответе, непонимание сущности излагаемого вопроса, неумение применять знания на практике, неуверенность и неточность ответов на дополнительные и наводящие вопросы».

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1 (2 семестр)

по дисциплине Математика (математический анализ, алгебра и геометрия)

1. Дать определение предела функции в точке и вычислить предел

$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1}$$

2. Доказать теорему о необходимых и достаточных условиях существования дифференциала функции.

3. Вычислить неопределённый интеграл
$$\int (5x-3)e^{2x}dx$$

Критерии оценивания.

Результатом является проставление в зачетной книжке итогового количества баллов и соответствующей оценки, согласно следующей шкале перевода баллов 100-балльной шкалы в их числовые коэффициенты:

- 84-100 баллов (оценка «отлично») изложенный материал фактически верен, наличие глубоких исчерпывающих знаний в объеме пройденной программы дисциплины в соответствии с поставленными программой курса целями и задачами обучения; правильные, уверенные действия по применению полученных знаний на практике, грамотное и логически стройное изложение материала при ответе, усвоение основной и знакомство с дополнительной литературой;
- 67-83 баллов (оценка «хорошо») наличие твердых и достаточно полных знаний в объеме пройденной программы дисциплины в соответствии с целями обучения, правильные действия по применению знаний на практике, четкое изложение материала, допускаются отдельные логические и стилистические погрешности, студент усвоил основную литературу, рекомендованную в рабочей программе дисциплины;- 50-66 баллов (оценка удовлетворительно) наличие твердых знаний в объеме пройденного курса в соответствии с целями обучения, изложение ответов с отдельными ошибками, уверенно исправленными после дополнительных вопросов; правильные в целом действия по применению знаний на практике;
- 0-49 баллов (оценка неудовлетворительно) ответы не связаны с вопросами, наличие грубых ошибок в ответе, непонимание сущности излагаемого вопроса,

неумение применять знания на практике, неуверенность и неточность ответов на дополнительные и наводящие вопросы».

3.3. Индивидуальные задания

Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение
высшего образования

«Ростовский государственный экономический университет (РИНХ)»

Кафедра Фундаментальной и прикладной математики

Индивидуальные задания по дисциплине Математика

Тема «Дифференциальное исчисление»

Задание1. Найти производные следующих функций:

1.
$$y = \sqrt[a+2]{Cos(b-cx)}$$
 2. $y = \frac{Sin^{a+2}(cx^2+b)}{2cx}$ 3. $y = e^{\frac{2x+c}{a+2}} \cdot Ctg(\frac{x}{a+2}+b)$

4.
$$y = (b+1)\sqrt{1-c^2x^2} + c\arcsin(cx)$$
 5. $y = Sin(\ln((b+1)x+c)) + \ln(Cos((a+1)x+b))$

6.
$$y = e^{Sin((b+1)x+a)^{c+1}}$$
 7. $y = \ln(a+2) \frac{e^{cx}}{b+1-e^{cx}}$ 8. $y = \ln(Sin(e^{(a+1)x+b}))$

9.
$$y = e^{cx+b} \cdot arctge^{cx+b} - \ln \sqrt{1 + e^{2(cx+b)}}$$

Примечание: ab – порядковый номер студента по журналу, с – номер группы

Задание 2. Исследовать функцию и построить ее график: $f(x) = \frac{x - \beta}{\sqrt{x^2 + \alpha}}$,

где $\alpha > 0$, $\beta > 0$.

 α , β порядковый номер студента по журналу.

Задание 3. Исследовать функцию и построить график:

$$y = \frac{1}{(a+1)^2}(x-p)((x-p)^2 - 3(a+1)^2)$$
 , где p = c-b,

ab – порядковый номер студента по журналу, с – номер группы.

Тема «Интегральное исчисление»

Задание 1. Найти неопределенные интегралы:

$$1. \int ctg(a + (b+1+c)x)dx \qquad 2. \int (c+2)^{\cos(b+1)x} Sin(b+1)xdx \qquad 3. \int \frac{x^2 dx}{(c+1)x^3 + b + 1} \quad 4.$$

$$\int (b+1)x \cdot Sin((c+1)x)dx \qquad 5. \int cx \cdot \ln((b+1)x)dx \qquad 6. \int (x+a)e^{-(b+1)x}dx \quad 7.$$

$$\int \frac{dx}{x^2 - (a+b-c)x + a(b-c)} \quad 8. \int \frac{dx}{\sqrt{c - (a-2+b)x - x^2}} \quad 9. \int Cos^2((b+c)x)dx \quad 10. \int \frac{xdx}{\sqrt{a+1-(b+1)x}}dx$$

Задание 2. Найти определенный интеграл: $\int\limits_0^{\frac{\pi}{b+1}}\!\!Sin^c(b+1)x\cdot Cos^{3-a}(b+1)xdx$

Задание 3. Исследовать на сходимость несобственный интеграл: $\int\limits_{c}^{+\infty} \frac{dx}{x^{b+1}}$

Примечание: ab – порядковый номер студента по журналу, с – номер группы

Критерии оценивания:

Оценка «зачтено» выставляется студенту, если он правильно выполнил 50 % и более задания.

3.4. Контрольные задания

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

Кафедра Фундаментальной и прикладной математики

(наименование кафедры)

Комплект контрольных заданий

по дисциплине Математика

(наименование дисциплины)

Тема «Линейные пространства и квадратичные формы. Аналитическая геометрия» (1 семестр)

Контрольное задание № 1

Вариант 1

1. Написать уравнение плоскости, параллельной оси *О х* и проходящей через точки

$$A(a, b, 1)$$
 и $B(a+1,b+1,2)$.

2. Записать канонические уравнения прямой $\begin{cases} 3x + y - z = 3 \\ x - 2y + z = 0 \end{cases}$

3.Найти точку пересечения прямой
$$\left\{ \frac{x-2}{3} = \frac{y-3}{2} = \frac{z}{3} \right\}$$

Вариант 2

1. Написать уравнения прямой, проходящей через точку М(*a,b,1*) и

параллельной прямой $\begin{cases} x+y-z=0 \\ 2x-y=2 \end{cases}$

- **2.**Записать параметрические уравнения прямой $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-4}{-4}$
 - 3.Найти точку пересечения прямой $\frac{x-3}{2} = \frac{y+2}{3} = \frac{z-1}{1}$

и плоскости x - 2y + z = 5

Критерии оценивания

- оценка «отлично» выставляется обучающемуся, если студент набирает 34-40 баллов	Задание решено в объеме, не меньше 84%
- оценка «хорошо» выставляется обучающемуся, если студент набирает 24-33 балла	Задание решено в объеме не меньше 67%
– оценка «удовлетворительно» выставляется обучающемуся, если студент набирает16-23 балла	Задание решено в объеме не меньше 50%
- оценка «неудовлетворительно» выставляется обучающемуся, если студент набирает менее 16 баллов	Задание решено в объеме менее 50 %

Тема «Теория пределов. Дифференциальное исчисление» (2 семестр)

Контрольное задание № 1

ВАРИАНТ № 1

1. Выяснить четность (нечетность) функции $y = \frac{\lg(1-x^2)}{\sqrt[3]{\cos x}} \cdot e^{-x^2}$. (1 балл)

2.
$$\lim_{x\to 5} \frac{\sqrt{x-1}-2}{x-5}$$
 (2 балла)

2.
$$\lim_{x\to 5} \frac{\sqrt{x-1}-2}{x-5}$$
 (2 балла) 3. $\lim_{x\to \infty} \frac{\sqrt[3]{x^3+2x-1}}{x+2}$ (2 балла)

4.
$$\lim_{x \to \infty} \left(\frac{7x+9}{7x-1} \right)^{2x+9}$$
 (3 балла) 5. $\lim_{x \to 0} \frac{tg\,2x}{\sin 5x}$ (1 балл)

5.
$$\lim_{x\to 0} \frac{tg \, 2x}{\sin 5x}$$
 (1 балл)

6. Найти
$$y'$$
:a) $y=6x^{\frac{3}{2}}arctg3x^{\frac{3}{2}}-\ln(1+9x^3)$ (3 балла)

б)
$$y = e^{\cos(\ln(1-3x))} + \sin^2(\ln(1-3x))$$
 (4 балла)

8. Найти
$$y''$$
, если $y=x^2\sqrt{1-x^2}$ (4 балла)

Критерии оценивания:

- оценка «отлично» выставляется	1. задание решено в полном объеме
обучающемуся, если студент набирает 19-22 баллов	2. сделан письменный вывод по заданию в полном объеме
- оценка «хорошо» выставляется	1. задание решено в объеме до 70 %
обучающемуся, если студент набирает 16 – 18 баллов	2. сделан письменный вывод по заданию в объеме до 70%
-оценка «удовлетворительно»	1. задание решено в объеме до 50%
выставляется обучающемуся, если студент набирает 11 – 15 баллов	2. сделан письменный вывод по заданию в объеме до 50%
- оценка «неудовлетворительно» выставляется обучающемуся, если	1. задание решено в объеме менее 50 %

студент набирает менее 11 баллов	2.	сделан	письменный	вывод	ПО
	зад	цанию в о	бъеме менее 50	0%	

Контрольное задание № 2

Вариант № 1

- 1. Найти полный дифференциал функции $z=\ln(x^2+y^2+2x+1)$. (2 балла)
- 2. Найти $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$ для функции $z=xy^2$, если x=2u+v, $y=u\sin v$. (5 баллов)
- 3. Найти производную функции $z=3x^4-xy+y^3$ по направлению I, составляющего с осью Ох угол 60°. (4 балла)
- 4. Написать уравнение нормали к поверхности $x^2 + y^2 + (z-5)^2 = 0$ в точке (4,3,0). (5 баллов)
- 5. Найти экстремумы функции $z=(x-7)^2+(y-7)^2$ при условии, что 24-3x-4y=0. (8 баллов)

Критерии оценивания:

- оценка «отлично» выставляется	1. задание решено в полном
обучающемуся, если студент набирает	объеме
20-24 баллов	2. сделан письменный вывод по заданию в полном объеме
- оценка «хорошо» выставляется	1. задание решено в объеме до 70
обучающемуся, если студент набирает 16	%
– 19 баллов	2. сделан письменный вывод по заданию в объеме до 70%
-оценка «удовлетворительно» выставляется	1. задание решено в объеме до
обучающемуся, если студент набирает 12	50%
– 15 баллов	2. сделан письменный вывод по заданию в объеме до 50%
- оценка «неудовлетворительно»	1. задание решено в объеме

выставляется	обучающемуся,	если	менее 50 %
студент набирае	т менее 12 баллов		2. сделан письменный вывод по заданию в объеме менее 50%

3.5. Задания для опроса

Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение
высшего образования

«Ростовский государственный экономический университет (РИНХ)»

Кафедра Фундаментальной и прикладной математики

(наименование кафедры)

Задания для опроса

по дисциплине Математика (математический анализ, алгебра и геометрия)

(наименование дисциплины)

Тема «Интегральное исчисление»

- 1. Первообразная функции, теоремы о первообразных.
- 2. Неопределенный интеграл и его свойства.
- 3. Теорема существования.
- 4. Таблица неопределенных интегралов.
- 5. Метод подстановки в неопределенном интеграле.
- 6. Интегрирование по частям в неопределенном интеграле.

- 7. Понятие о "неберущихся" интегралах в элементарных функциях.
- 8. Понятие интегральной суммы.
- 9. Определение определенного интеграла. Теорема существования.
- 10. Геометрический смысл определенного интеграла.
- 11. Свойства определенного интеграла, выраженные равенствами.
- 12. Свойства определенного интеграла, выраженные неравенствами.

Критерии оценивания

Правильный ответ на один вопрос оценивается в 0,25 баллов.

Студент получает «зачет», если набирает 1-2 балла; «незачет» - если набирает менее 1 балла.

3.6. Задания для собеседования

Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение
высшего образования

«Ростовский государственный экономический университет (РИНХ)»

Кафедра Фундаментальной и прикладной математики

(наименование кафедры)

Задания для собеседования

(наименование дисциплины)

Тема «**Теория пределов и дифференциальное исчисление**»

Подготовить краткий конспект по темам «Функции и отображения», «Предел функции», «Непрерывность функции», «Дифференциальное исчисление».

Критерии оценивания

Максимально возможное количество баллов при написании конспекта 1 балл. Студент получает «зачтено», если он набирает 0,5-1 баллов; «незачтено», если он набирает менее 0,5 баллов.

4 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедуры оценивания включают в себя текущий контроль и промежуточную аттестацию.

Текущий контроль успеваемости проводится с использованием оценочных средств, представленных в п. 3 данного приложения. Результаты текущего контроля доводятся до сведения студентов до промежуточной аттестации.

Промежуточная аттестация проводится и в первом и во втором семестрах в форме экзамена.

Экзамен проводится по расписанию экзаменационной сессии в письменном виде. В экзаменационном задании – 2 теоретических вопроса и один

практический (в первом семестре) и один теоретический и два практических (во втором семестре). Проверка ответов и объявление результатов производится в день экзамена. Результаты аттестации заносятся в экзаменационную ведомость и зачетную книжку студента. Студенты, не прошедшие промежуточную аттестацию по графику сессии, должны ликвидировать задолженность в установленном порядке.

Приложение 2 к рабочей программе

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Ростовский государственный экономический университет (РИНХ)»

Рассмотрено и одобрено на заседании кафедры Фундаментальной и прикладной математики Протокол № $\underline{10}$ от $\underline{\checkmark 24.05}$ $\underline{2018}$ г. Зав.кафедрой проф. Стрюков М. Б.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИН

Математика (математический анализ, алгебра и геометрия)
(наименование дисциплины)

Направление подготовки

10.03.01 «Информационная безопасность»

Профиль

10.03.01.02 «Организация и технология защиты информации»

Уровень образования Бакалавриат

Составитель:

Батищева Г.А., проф. каф. ФиПМ, д.э. н., доцент Лукьянова Г.В., доцент каф. каф. ФиПМ, к.т. н., доцент

(подпись) Ф.И.О., должность, ученая степень, ученое звание

Ростов-на-Дону, 2018

Методические указания по освоению дисциплины « Математический анализ и линейная алгебра» адресованы студентам всех форм обучения.

Учебным планом по направлению подготовки 38.03.01 «Экономика» предусмотрены следующие виды занятий:

- лекции;
- практические занятия;

В ходе лекционных занятий даются определения и формулируются теоремы, приводятся доказательства основных результатов, даются рекомендации для самостоятельной работы и подготовке к практическим занятиям.

В ходе практических занятий углубляются и закрепляются знания студентов по ряду рассмотренных на лекциях вопросов, развиваются навыки решения типовых задач, проверяется владение теоретическим материалом.

При подготовке к практическим занятиям каждый студент должен:

- изучить рекомендованную учебную литературу;
- изучить конспекты лекций;
- подготовить ответы на все вопросы по изучаемой теме;
- –письменно решить домашнее задание, рекомендованные преподавателем при изучении каждой темы.

Вопросы, не рассмотренные на лекциях И практических занятиях, быть изучены студентами В ходе самостоятельной работы. должны Контроль самостоятельной работы студентов над учебной программой курса осуществляется ходе занятий методом устного опроса и проверки выполнения домашней работы. В самостоятельной работы каждый ходе студент обязан прочитать основную и ПО возможности дополнительную литературу по изучаемой теме.

При реализации различных видов учебной работы используются разнообразные (в т.ч. интерактивные) методы обучения, в частности:

- интерактивная доска для подготовки и проведения лекционных и семинарских занятий;
 - программное обеспечение Microsoft Exsel.

Для подготовки к занятиям, текущему контролю и промежуточной аттестации студенты могут воспользоваться электронной библиотекой ВУЗа http://library.rsue.ru/. Также обучающиеся могут взять на дом необходимую

литературу на абонементе вузовской библиотеки или воспользоваться читальными залами вуза.

Математический анализ, алгебра и геометрия являются одной из важнейших фундаментальных дисциплин и является общим теоретическим основанием для всех математических и естественно-научных дисциплин, входящих в ООП бакалавра экономики.

Для дисциплины Математика (математический анализ, алгебра и геометрия) по каждой теме курса студентам предлагается выполнение самостоятельного или контрольного задания.

Прежде чем выполнить эту работу, студент должен разобраться в основных понятиях и методах соответствующей темы, прочитав соответствующую лекцию и дополнив, если необходимо, изучением соответствующего раздела по учебнику. Затем необходимо разобрать решение типичных примеров и задач по соответствующей теме, решить примеры домашнего задания по данной теме. Для закрепления материала необходимо продумать ответы на контрольные вопросы к экзамену по данной теме.